
Applied Joint-Space Torque and Stiffness Control

of Tendon-Driven Fingers

Muhammad E. Abdallah, Robert Platt Jr., Charles W. Wampler, Brian Hargrave

Abstract— Existing tendon-driven fingers have applied force
control through independent tension controllers on each tendon,
i.e. in the tendon-space. The coupled kinematics of the tendons,
however, cause such controllers to exhibit a transient coupling
in their response. This problem can be resolved by alternatively
framing the controllers in the joint-space of the manipulator.
This work presents a joint-space torque control law that
demonstrates both a decoupled and significantly faster response
than an equivalent tendon-space formulation. The law also
demonstrates greater speed and robustness than comparable
PI controllers. In addition, a tension distribution algorithm is

presented here to allocate forces from the joints to the tendons.
It allocates the tensions so that they satisfy both an upper
and lower bound, and it does so without requiring linear
programming or open-ended iterations. The control law and
tension distribution algorithm are implemented on the robotic
hand of Robonaut-2.

I. INTRODUCTION

Tendon transmission systems are often used in the actu-

ation of fingers for high degree-of-freedom (DOF) hands.

The remote actuation allows for significant reductions to the

size and weight of the fingers, features that are important for

dexterous manipulation. Since the tendons can only transmit

forces in tension, the number of actuators must exceed the

DOF’s to achieve fully determined control of the finger.

It turns out that only one tendon more than the number

of DOF’s is needed [1]. If arranged correctly, the n + 1
tendons can independently control the n DOF’s while always

maintaining positive tensions. Such an “n+1” arrangement is

very attractive due to its minimum number of actuators. Each

extra actuator and transmission system greatly increase the

demands on space, power, and maintenance for the system.

On the other hand, an “n + 1” arrangement also intro-

duces a layer of complexity to the control. This complexity

arises from the coupled relationship between the tendon and

joint displacements. Traditionally, such fingers have been

controlled using what can be referred to as tendon-space

controllers. Under such schemes, desired joint torques are

translated into desired tendon tensions, then each tension

is controlled by an independent controller. Salisbury and

Craig were the first to implement such a scheme using the

Stanford/JPL hand [2]. Similar schemes where implemented

M. Abdallah and C. Wampler are with the Manufacturing Sys-
tems Research Lab, General Motors R&D, Warren, MI 48090, USA
{muhammad.abdallah, charles.w.wampler}@gm.com

R. Platt was with the Johnson Space Center, NASA, Houston, TX 77058,
USA robert.platt-1@nasa.gov

B. Hargrave is with Oceaneering Space Systems, Houston, TX 77058,
USA bhargrave@oceaneering.com

Patents are pending on this work.

on the CT-ARM manipulator and POSTECH hand, although

they both used 2n tendons [3], [4].

Platt, et al. have shown, however, that tendon-space con-

trollers introduce a transient coupling to the dynamics of the

finger [5]. This disturbance arises intrinsically from the kine-

matics of the tendons, rather than from bandwidth limitations

in the controllers. This problem is solved by implementing

joint-space controllers that regulate the reference torques in

the joint-space and thus decouple the tendon effects.

The ability to control torques is important in assembly ap-

plications, where fingers physically interact with unstructured

environments. The torque control can then be implemented in

either a stiffness or impedance framework, to define either

the static or dynamic interaction of the finger. This work

presents a stiffness controller for tendon-driven manipulators.

The controller is implemented in both a tendon-space and

joint-space formulation.

The existing systems all implemented their torque control

based on proportional-integral (PI) controllers, be they in the

tendon-space [2], [4] or in the joint-space [5]. The joint-space

controller of [5] struggled when conduits where added to

the tendon drive-train. The conduits add complex dynamics

and hysteresis due to their distributed stiction. The controller

presented here proved to be both faster and more robust

to the unmodeled conduit dynamics than the comparable PI

controller.

In addition, this work presents a tension distribution al-

gorithm for allocating the desired forces from the joints to

Fig. 1. The torque controlled fingers of Robonaut-2.



the tendons. This step is necessary in all torque controllers,

where it must satisfy the fundamental requirement of pos-

itive tensions. The algorithm presented here distributes the

tensions so that they satisfy both a lower and upper bound.

It satisfies the lower bound while minimizing the internal

tension applied. At the same time, it satisfies the upper bound

while eliminating the coupled effects of saturation. The

algorithm is computationally efficient, requiring no linear

programming or open iterative solutions.

A few alternatives exist in the literature. Salisbury and

Craig present a method for setting the lowest tension equal

to zero, and we build off their method [2]. Jacobsen, et.

al present a computationally efficient analytical solution for

antagonistic pairs [6], which is then extended to multiple

DOF systems by Lee and Tsai [7]. This solution, however,

only provides for positive tensions and is heavily system

dependent, requiring considerable analytical derivation for

each system. Hirose and Ma present an alogrithm that

changes the joint torques and does not necessarily minimize

the internal tension [8].

Both the joint-space controller and the tension distribu-

tion algorithm are currently implemented on the humanoid

hand of the GM-NASA Robonaut-2 robot. These topics are

presented over three sections. The first section presents the

tension distribution algorithm. The second section presents

the control law in both formulations. Finally, the third section

presents the experimental results from Robonaut-2.

II. TENSION DISTRIBUTION ALGORITHM

A. Problem

In the torque control of tendon-driven fingers, the desired

joint torques must first be translated into tendon tensions.

This problem is referred to as tension distribution, and it

must ensure that each tension value is non-negative. Alter-

natively, the step can be framed as a problem of solving

for the necessary internal tension on the finger. The distri-

bution can essentially be solved using a linear programming

technique—which is undesirable due to the complexity and

open iterative nature of the solution.

We present a solution that ensures that each tension falls

within the bounded range [fmin, fmax], where fmin ≥ 0. It

sets the lowest tension equal to fmin and thus minimizes

the internal tension. Whenever the highest tension exceeds

fmax, it solves for the linear scaling of the torques needed

to satisfy the bounds while minimizing the internal tension.

Using conventional optimization techniques, this problem

would require a piecewise linear program dependent on a

multi-dimensional feasibility test. A much simpler algorithm

is derived here.

Fundamental to the problem is the relationship between

the n joint torques, τ , and the n+1 tendon tensions, f . The

transformation from tensions to torques is:
(τ

t

)

= Pf , (1)

P =

[

R

W

]

,

where t is defined as the internal tension. R ∈ R
n×n+1 is

known as the tendon map; it contains the joint radii data

mapping tendon tensions to joint torques. W is an n + 1
row matrix that does not lie in the range space of RT .

For the system to be tendon controllable, R must be full

row rank and have an all-positive null-space [9]. P is thus

a nonsingular matrix. Throughout this work, bold symbols

represent column matrices.

The solution for the tensions can be found from the inverse

of (1). That inverse can be partitioned as follows:

f = P−1
(τ

t

)

, (2)

P−1 = [A a],

where A ∈ R
n+1×n and a ∈ R

n+1×1. We will select W to

be orthogonal to R; that is, RWT = 0. W thus spans the

null-space of R and, by assumption, is all-positive. Under

this orthogonality condition:

A = R+, a = W+, (3)

where the superscript (+) indicates the pseudoinverse. Note

that a is all-positive, since the pseudoinverse of a positive

vector is also positive. Assuming constant joint radii, A and

a are constant matrices that can be precomputed.

B. Solution

The first step in the algorithm is to distribute the tensions

so that the minimum value equals fmin. Let Ai represent the

rows of A and ai the elements of a. We require that,

fi = Aiτ + ait ≥ fmin. (4)

This entails the following solution for the internal tension,

presented in [2]. Recall that ai > 0.

t0 = max
i

fmin − Aiτ

ai

(5)

By substituting this internal tension value (t0) into (2),

we can obtain the tension distribution. We refer to this

distribution as the initial solution.

f = [A a]

(

τ

t0

)

. (6)

Now, we want to take this algorithm a step further and set

an upper bound for the tension values. The first step is to

check if any of the tensions exceed the upper bound, fmax.

Let index l represent the element with the lowest tension and

h represent the element with the highest tension. If fh >

fmax, we will linearly scale the torques such that:

f = [A a]
(ατ

t

)

, (7)

where α is a positive scalar. Now, we will find the explicit

solution where fl = fmin and fh = fmax. By solving for

the respective rows in (7), the result follows and is referred

to as the scaled solution.

d = (ahAl − alAh)τ

α =
ahfmin − alfmax

d

t =
fmaxAl − fminAh

d
τ (8)



As we will show in the next subsection, this solution guar-

antees that f ∈ [fmin, fmax] under two conditions: when

fmin = 0 or the finger design has a balanced configuration.

A finger with a balanced configuration exhibits no net torques

when the tensions are all equal. Otherwise, the solution does

not guarantee that all elements lie within the desired limits.

In the case that an element does exceed the limits, the scaled

solution (8) needs to be iterated after reassigning the index

l or h, respectively, to the new extreme element.

Having an open-ended iterative solution is undesirable

in a high bandwidth, real-time application. We show here,

however, that the need to iterate is rare due to the nature

of the tendon transformation. For a typical design, it can

occur for less than 2% of the commanded torque values. Not

only that, but the first iteration is sufficient for solving the

problem. Hence, instead of an open-ended iterative problem,

the algorithm can be capped at one iteration. Of course,

no iterations at all are needed if either fmin = 0 or the

configuration is balanced. The next subsection discusses

these claims.

The advantage of this algorithm lies in two key points.

First, it distributes the tendons with a computationally ef-

ficient algorithm that does not need linear programming.

Second, it caps the maximum tension with a linear scaling

of the desired joint torques. This feature protects the tendons

from being overloaded either by the controller or by the

environment. It also allows the system to avoid mechanically

saturating the tensions, which would introduce a coupled

disturbance to the joint torques.

Here is a summary of the tension distribution algorithm:

1) Find the initial solution using (5) and (6).

2) Assign index h to the element with the highest tension

and l to the element with the lowest tension.

3) If fh < fmax, exit. Else, find the first scaled solution

using (8) and (7).

4) Assign index h to the element with the highest tension

and l to the element with the lowest tension.

5) If fh < fmax and fl > fmin, exit. Else, find the second

and final scaled solution using (8) and (7).

C. Analysis

The previous subsection claims that the scaled solution

rarely pushes another element beyond the bounds. It also

claims that no iterations are needed when fmin = 0 or the

finger has a balanced configuration. This subsection presents

an analysis of these claims.

First, consider the condition for the existence of a solution

in (8). Derived from the limiting case of f = ato, a solution

will exist if and only if:

fmax ≥ max
i

ai

al

fmin. (9)

This condition should be readily satisfied in typical finger

implementations. Given this condition, it can be shown that

α lies in the range (0, 1).
Second, consider the relationship between the scaled and

initial solutions. Whenever the scaled solution maintains the

relative order of the elements, no iteration will be needed.

Let 0f refer to the initial solution while 1f refer to the

first scaled solution. It can be shown that the two relate as

follows.

1f = α 0f + (1−α)fmin

al

a (10)

The first term on the right-hand side represents the linearly

scaled portion of the result; it thus maintains the order of

the elements. The second term, however, represents a change

in the linear distribution. Hence, when fmin = 0, the term

drops out and the scaled solution fully maintains the relative

magnitudes of the elements. This guarantees that the bounds

are satisfied after the first scaled solution.

Alternatively, the linear distribution is also maintained if

the elements of a are all equal. We refer to this condition

as a balanced configuration. The condition occurs when the

columns of R, ri, sum to zero.

n+1
∑

i=1

ri = 0 (11)

Hence, a vector f of equal tensions will lie in the null-space

of R. Intuitively, it implies that the joint radii are so balanced

as to produce no net torques when the tensions are all equal.

When neither of these two conditions is true, the relative

order of the elements can change and a different element

can jump the limit. In a typical finger design, however,

the relative difference between the elements of a will be

small and the jump will rarely occur. Fingers designed

to manipulate in both directions will not diverge far from

the balanced condition; otherwise, the force control will be

heavily biased in one direction. In a numerical study of a

representative finger, it was observed that a third element

rarely exceeds the bounds after the first scaled solution, and

that the algorithm can be capped at one iteration. That study

is presented in the next subsection.

D. Computational Results

The algorithm was tested in a Matlab simulation modeling

the Robonaut index finger. The finger has three joints and

four tendons (R ∈ R
3×4). The actuators were designed for

a maximum of 50 lb tension, producing a maximum joint

torque of 26 in-lbs on the finger. The tendon map for the

finger follows.

P =









0.15 0.15 −0.15 −0.15
0.265 −0.195 0.265 −0.195

0 0 0.195 −0.195
0.195 0.367 0.281 0.281









(12)

The algorithm limits were set to fmin = 2 lbs and fmax =
40 lbs. The value of fmin was selected conservatively; lower,

more typical values reduce the chance of needing iterations.

According to condition (9), a solution exists given fmax ≥ 4.

The simulation tested all torque combinations spanning a

range of τi ∈ [−50, 100] in-lbs, with a 1 in-lb resolution.

After the first scaled solution, an element of f exceeded the

limits on less than 2% of the torque values. Even in those

cases, the high and low values remained close to the limits.



Out of the 3 million test points tried, the absolute maximum

tension value was 41.1 lbs, and the absolute minimum was

1.2 lbs.

Running the same test with one iteration, the limits were

exceeded on (statistically) 0% of the values. The absolute

extreme values returned were 40.2 and 2.0 lbs respectively.

Hence, we can confidently cap the number of iterations in

the algorithm at one.

Given this tension distribution algorithm, we can now turn

to the actual finger controllers. The next section presents

the control law in both a tendon-space and joint-space

formulation.

III. FINGER STIFFNESS CONTROLLER

The ability to control torques is important for manipulators

that interact physically with their environments. The torque

controller presented here is formulated as a stiffness con-

troller for the finger joints. It can also be applied to higher-

order terms for full impedance control.

The stiffness control commands a torque proportional to

the joint error. Given a desired vector of joint values, qd, the

vector of desired joint torques follows.

τ d = K(qd − q) (13)

K is the diagonal stiffness matrix and q is the sensed joint

positions.

The next two subsections present the tendon-space and

joint-space formulations of the torque controller. In both

cases, we need to solve for the desired internal tension, td,

such that the tension values are all positive. The tension

distribution algorithm of section II provides a solution that

applies both a lower and upper bound to the tensions.

A. Tendon-Space Controller

We will first develop the tendon-space formulation for

the torque controller. Since actuators often already employ a

well-tuned position controller, a standard approach to force

control uses an inner position loop. The torque control loop

thus needs to pass commanded actuator positions, xd, to

the lower loop, where it is assumed that a high-gain PD

controller exists around the actuator position. The desired

tendon tensions, fd, are found from the desired torques

through the tendon map matrix as follows.

fd = P−1

(

τ d

td

)

(14)

The tendon-space controller models the tendon as a linear

spring, where

f = ks(x − xo). (15)

ks is the spring constant, x is the current position of the

actuator, and xo is the unstretched position. This relation

assumes that the spring constant is effectively equal for all

the tendons. This is a valid assumption, since the tendon

lengths are relatively equal. For a desired tension, the relation

becomes,

fd = ks(xd − xo). (16)

Subtracting (15) and (16) results in the following relation for

the desired actuator position.

xd = x +
1

ks

(fd − f) (17)

This relation inspires the following tendon-space control

law. It feeds forward the current actuator position and adds

damping to increase the stability of the controller.

xd = x − kdẋ + kp(fd − f) (18)

kp and kd are the constant, scalar gains. Since x is both

proportional to f and has a less noisy signal, ẋ is employed

for the damping term instead of ḟ .

A key advantage of this control law is that it does not

employ an integrator as in [2], [4]. The feed forward term

makes the controller faster, avoiding the lag and wind-up

problems associated with the integrator; however, it also

results in non-zero steady-state error.

B. Joint-Space Controller

The tendon-space control law (18) does a good job of

independently tracking the desired tensions. Its transient

behavior, however, displays a coupled response amongst the

joints, one that introduces unnecessary motion given either

step inputs or disturbance responses. This coupling is a direct

product of the control law, rather than the passive dynamics

[5]. The following controller seeks to eliminate this coupled

transience by operating in the joint-space.

Accordingly, an analogous control law to (18) is formu-

lated in the joint-space. This allows for the independent

regulation of the joint torques.

q̄d = q̄ − kd ˙̄q + Kp(τ̄ d − τ̄ ) (19)

The null-space components are included in this relation,

where q̄ =
(q

θ

)

and τ̄ =
(τ

t

)

. τ̄ is computed from the

sensed tensions through (1). Kp is the proportional gain

matrix; it is diagonal but no longer scalar since the internal

tension needs a different gain than the joint torques. kd, on

the other hand, is intentionally left scalar.

To convert the joint velocities to tendon velocities, a

standard virtual work analysis provides the following dual

transformation [10]. This relation assumes negligible friction

in the joint pulleys as well as constant external torque.

ẋ = PT

(

q̇

θ̇

)

(20)

θ̇ is defined as the internal velocity. Assuming equal tendon

stiffnesses, θ̇ parameterizes the space of tendon velocities

that apply no change to the joint torques. Defining the initial

positions as zeros leads to the following relation in the

position domain.

x = PT
(q

θ

)

(21)

Given this transformation, we can now derive our final

joint-space controller.

xd = PT q̄d

= PT [q̄ − kd ˙̄q + Kp(τ̄ d − τ̄ )]

= x − kdẋ + PT Kp (τ̄ d − τ̄ ) (22)



Keeping kd scalar allows us to translate the damping term

to the tendon space. The collocation achieved by using the

actuator sensing, x and ẋ, instead of the joint sensing, q

and q̇, increases the stability of the system. Otherwise, the

feed-forward and damping terms would lag the actuation by

the unmodeled dynamics of the tendon-conduit transmission.

C. Discussion

The tendon-space control law (18) can be rearranged as

follows.

xd = x − kdẋ + P−1kp (τ̄ d − τ̄ ) (23)

Note the similarity between (22) and (23). The essential

difference between the two control laws is in the use of

PT versus P−1. Replacing the inverse with the transpose

provides the decoupling of the joint-space motion. This is

analogous to the duality associated with the Jacobian in the

Cartesian control of serial manipulators. Consider the two

control laws: ∆q = kJ−1∆y, and ∆q = kJT ∆y. In this

expression: J is the end-effector Jacobian, y is the end-

effector position, q is the joint angles, and k is the gain. The

first law produces straight line motion in Cartesian space,

while the second produces coupled Cartesian motion.

In [5], PI torque regulators were implemented in the joint-

space on a finger having no conduits about the tendons.

When conduits were introduced, that approach struggled due

to the distributed stiction between the tendons and conduits,

which add complex dynamics or hysteresis to the system.

We ended up not needing to model the hysteresis thanks

to the combination of the feed-forward term and the sensor-

actuator collocation. This combination allowed our controller

to produce both a more stable and faster response compared

to the customary PI controller.

IV. EXPERIMENTAL VALIDATION

A. Mechanical System

The two control laws were tested on an index finger of

the Robonaut-2 robot, a model of which is shown in Fig. 2.

The finger has four tendons and three independent DOF’s: a

yaw, a proximal pitch, and a medial pitch. The yaw joint is

perpendicular to both pitch joints, and the tendon mapping

matrix is shown in (12).

The system is actuated by brushless DC motors with

a planetary reduction gearhead. A ball-screw provides the

linear conversion for the motor power, which is then trans-

mitted to the finger through a tendon-conduit arrangement.

Feedback on the tendon tensions are provided through strain-

gauges lying in the path of the transmission.

B. Step Response

The step response of each controller was tested using

a step input of qd = (0, 45, 90)T degs. The results are

shown in Fig. 3. The tendon-space controller exhibited the

aforementioned transient coupling, coupling that disturbed

the tension tracking, delayed the response time, and produced

unsightly motion in the finger. This behavior was consistently

demonstrated throughout our tests; it surfaced also in the

response to external disturbances.

Fig. 2. A model of the Robonaut-2 index finger. Motion of the distal joint
is mechanically linked to the medial joint.

0 1 2 3 4 5 6 7 8 9 10
−20

0

20

40

60

80

jo
in

t 
a
n
g
le

 (
d
e
g
s
)

Tendon−Space Controller

 

 

Proximal

Medial

Yaw

0 1 2 3 4 5 6 7 8 9 10
−20

0

20

40

60

80

time (s)

jo
in

t 
a
n
g
le

 (
d
e
g
s
)

Joint−Space Controller

 

 

Fig. 3. Comparison of the two finger controllers. A positive then negative
step input of {0, 45, 90} degs was commanded. Note both the decoupled
and faster response of the joint-space controller.

The joint-space controller, on the other hand, eliminated

the coupling and significantly increased the speed of the

response. For both moving joints, the joint-space controller

reduced the settling time by almost 25%. The medial joint

dropped from a settling time of 1.3 s to 0.97 s. The proximal

joint dropped from a settling time of 2.2 s to 1.7 s.

The controller parameters are shown in Table I. In each

case, the gains were tuned to maximize performance. The

lower-loop position controller implemented the same gains

for both runs, which were tuned to produce a critically-

damped response. As seen in the table, a higher stiffness

value was applied to the yaw joint in both cases. The yaw

joint is relatively ill conditioned due to significantly smaller

radii; hence, the higher stiffness better controlled its motion.

The steady-state errors seen in the results can be addressed

with a limited-range integrator.

C. Tension & Torque Regulation

A second experiment demonstrated the performance of the

torque regulation and tension distribution. In this experiment,



tendon-space joint-space

kd 0.01 0.01

kp, Kp 0.01







0.05 0 0 0

0 0.05 0 0

0 0 0.05 0

0 0 0 0.003







K





0.3 0 0

0 0.2 0

0 0 0.2









0.3 0 0

0 0.2 0

0 0 0.2





TABLE I

CONTROLLER PARAMETERS USED IN THE EXPERIMENTAL RUN.

the finger was operated in torque control mode. Instead of

the stiffness input in (13), a reference torque is directly

commanded. With the finger sitting against a hard surface,

the reference torque for the proximal joint ramped up from

0 to 3.1 in-lb in regular increments. The minimum and

maximum tension were set at 1 and 8 lb, respectively. At

about 2.3 in-lb, the tensions saturated and the scaled solution

kicked in for the distribution algorithm.

Results of the experiment are shown in Fig. 4. The first

figure shows the tension distribution satisfying the upper and

lower limits. Ideally, the lowest tension should always equal

1 lb, while the maximum tension should equal 8 lbs during

saturation. Deviations from this ideal are due to errors in the

torque regulation and sensor calibration. The second figure

shows the torque regulation, where the displayed torques

are computed from the tension feedback using (1). While

the medial and yaw torques should remain at zero, the

proximal should follow the reference torque until saturation.

At that point, it should follow the scaled solution. The

experiment demonstrates how saturation is achieved without

joint coupling.

V. CONCLUSIONS

For tendon-actuated manipulators, joint-space control of-

fers clear advantages over tendon-space control. Not only

does it eliminate the coupled transience exhibited by tendon-

space formulations, it also significantly increases the speed

of the response. The final form of the control law (22)

reveals how simple the transformation from tendon-space to

joint-space is. Simply switching from P−1 to PT achieves

the desired decoupling. Surprisingly, the same features that

helped reduce the joint-space control law to such a simple

form also enhanced the performance. These features resulted

in a final controller that demonstrated both greater speed and

stability than the typical PI controllers. This fact was critical

for the implementation of a conduit sheathed drive-train.

The problem of tension distribution, faced by all torque

controllers, is essentially a linear programming problem.

Using knowledge of the system, we are able to reduce the

problem to a tractable algorithm—one conducive to real-time

implementation. The upper bound in the algorithm is needed

to protect the tendons and to maintain predictable, decoupled

torques. The non-zero lower bound allows the controller to

either accommodate calibration errors in the tension sensors,

or to reduce the internal tension on the finger.

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7

8

Tension Distribution

time (s)

te
n

s
io

n
 (

lb
s
)

 

 

0 50 100 150 200 250 300 350 400 450
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

time (s)

to
rq

u
e

 (
in

 l
b

s
)

Torque Regulation

 

 

f
1

f
2

f
3

f
4

Reference

Scaled

Yaw

Proximal

Medial

Fig. 4. With the finger in torque control mode, the reference proximal
torque is given a triangle input from 0 to 3 in-lb. The controller kept the
tensions bounded by the range [1 lb, 8 lb], allowing the tensions to saturate
without coupling the joint torques.

REFERENCES

[1] R. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to

Robotic Manipulation. Boca Raton, FL: CRC Press, 1994.
[2] J. Salisbury and J. Craig, “Articulated hands: Force control and

kinematic issues,” International Journal of Robotics Research, vol. 1,
no. 1, pp. 4–17, 1982.

[3] S. Ma, S. Hirose, and H. Yoshinada, “Design and experiments for a
coupled tendon-driven manipulator,” IEEE Control Systems Magazine,
vol. 13, no. 1, pp. 30–36, 1993.

[4] Y. Lee, H. Choi, W. Chung, and Y. Youm, “Stiffness control of
a coupled tendon-driven hand,” IEEE Control Systems Magazine,
vol. 14, no. 5, pp. 10–19, 1994.

[5] R. Platt, M. E. Abdallah, C. W. Wampler, and B. Hargrave, “Joint-
space torque and stiffness control of tendon-driven manipulators,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA) (in submission

to), Shanghai, China, May 2011.
[6] S. Jacobsen, J. Wood, D. Knutti, and K. Biggers, “The Utah/MIT hand:

Work in progress,” Intl. Journal of Robotic Research, vol. 3, no. 4,
pp. 21–50, 1984.

[7] J. Lee and L. Tsai, “Torque resolver design for tendon-driven manip-
ulators,” ASME Journal of Mechanical Design, vol. 115, pp. 877–883,
1993.

[8] S. Hirose and S. Ma, “Coupled tendon-driven multijoint manipulator,”
in IEEE Intl Conf on Robotics and Automation (ICRA), Sacramento,
April 1991, pp. 1268–1275.

[9] H. Kobayashi, K. Hyodo, and D. Ogane, “On tendon-driven robotic
mechanisms with redundant tendons,” International Journal of

Robotics Research, vol. 17, no. 5, pp. 561–571, May 1998.
[10] M. T. Mason and J. K. Salisbury, Robot Hands and the Mechanics of

Manipulation, 2nd ed. Cambridge, MA: MIT Press, 1982.


